A couple of months ago (really, a long, *long* time ago) I found an interesting question on Mathematics Stack Exchange (another site to effectively waste away hours of your life). It reminded me of my Bachelor's thesis (which I wrote a really, *really long* time ago) about the sequence

where and

Here, stands for the greatest common divisor,^{1} i.e., the largest integer that divides both and . This may not seem terribly interesting at first sight, but if you look at the first few values for you'll notice something curious:

1, 1, 1, 5, 3, 1, 1, 1, 1, 11, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 47, 3, 1, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 101...

There are for sure a lot of ones in there, but other than that, all the numbers are primes. This is not a bias in the first few example -- Eric Rowland proved that all values of are either or a prime in a beautiful little paper back in 2008. Continue reading Prime Generating Sequences

It's common to abbreviate gcd(a,b)=(a,b) in number theory, and I shall do so in the remainder of the article. Similarly, it's convention to write lcm(a,b)=[a,b]. ↩